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An approach is proposed for determining the internal heat-transfer coefficient and 
effective thermal conductivity of a porous body. The approach is based on an itera- 
tive method of solving an inverse coefficient problem of heat conduction. 

The determining parameters in calculating the thermal conditions of a porous body are 
the internal heat-transfer coefficients and the heat-transfer coefficient at the inlet to 
the body, the effective thermal conductivity of the porous frame, and the blowing rate, which 
is dependent on the pressure drop and the hydraulic resistance of the system. 

The internal heat-transfer coefficients of porous bodies in steady-state regimes can be 
determined from the results of numerous heat experiments using, for example, the methods 
presented in [1-6]. 

The present work proposes an algorithm for identifying the internal heat-transfer co- 
efficients and effective thermal conductivity of a porous frame from the solution of an in- 
verse problem by means of an iterative method [7]. 

We will examine the following inverse coefficient problem of heat transfer for a porous 
body in the form of an infinite plate 0 ~ x ~ b. It is necessary to use (n- i) known non- 
steady values of temperature inside the body and type I boundary conditions to determine the 
internal heat-transfer coefficient and effective thermal conductivity of the body. We pre- 
scribe the initial temperature distributions for the solid and gaseous phases, the law of 
change in coolant discharge over time, the hydraulic characteristics of the body, and the 
dependences of the remaining thermophysical characteristics of the material of the porous 
frame and the injected coolant on the corresponding temperature. 

We write the problem as follows: 

OT~ 0 / 
Cs l~ ,  - -  ~z v (T~ - -  Tg), _ ~T~ i 

O~ Ox Ox / 
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O ~ x ~ b ;  O~'v~'~m, 

T~(x, 0) = ~(x) ;  Tg(x, O) -~ ~g(X), (3)  

T~ (0, T) : % (~); Tg (0, x) ---- q~g (T), (4) 

Ts(b, T)=f,(T); Tg(b, "~) ---- [g{-~), (5) 

T~(x,, T ) =  f~(~), i =  2, a . . . . .  n. (6) 

The density of the gas is determined from the equation of state 

pMg , kglm3 (7) 
9g = 8314Tg 
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where the pressure is calculated by integrating, over x, the differential equation describing 
the modified Darcy's law: 

dp _ o~p,v q- Opv z. (8) 
dx 

We will solve the stated problem using an iterative algorithm to solve an inverse heat- 
conduction problem constructed by gradient methods. Recent investigations [7] showed that 
the algorithm is quite effective for solving imperfectly formulated problems. 

We will transform imperfectly stated problem (1)-(6) into an extreme problem: find 
the functions ~v=~v(pv,~,...) and %seft=%s(Ts) from the condition of the minimum of the mean 
square error 

~m (9) 

i=2 0 

with limitations (1)-(3). We determine Ts(Xi, T) from the solution of the direct heat-trans- 

fer problem in the porous body. 

To calculate the gradient of functional (9), in the gradient method it is necessary to 
solve the inverse problem, using the solution of the conjugate problem [7]. 

We will write the conjugate problem for the given case. Regarding the stated problem 
(1)-(5) as a multilayered problem, we obtain a formula for the increment of functional (9) 
with a change in the sought quantities ~V and ~s by small amounts A~ V and 5~s, respectively. 

Here, T and T receive small increments in z(x, T) and u(x, T), satisfying the equations 
s g 

OCszi =@sZi)" @av(U--Zi)--  (A~v+U O~v ~ --Tg) + 0 ( OTs~ aT ~ 7  (T~ ~x A~s -~x ) ' i =  1, 2 . . . . .  n; (10) 

OCpa ix ( OoC pg u _ (~gu)" - -  9v  ~ - -  % (u - -  z d  § A %  + u ,9% 
OT Ox OTg ] (Tsi -- Tg), (11) 

supplemented by zero initial and boundary conditions 

z~ (x ,  0)  = u (x ,  0)  = 0,  

z~ (0 ,  -c) = u (0 ,  "c) = O, 

z~(b, r ) = u ( b ,  ~ ) = 0 .  

The following conditions are satisfied at the points between the layers 

Zi(Xi+l, T ) = Z i + I ( X i + I ,  T), i =  1, 2 . . . . .  n - -  1, 

0Zi(%i+l, %) =OZi+l(Xi+l, T) 
Ox Ox 

(12) 

(13) 

(14) 

(15) 

( 1 6 ) .  

For the linear part of the increment of functional (9), we have 

AJ (h~ v, AL~) -- 2 ~ [T~ (x~, "~) -- fi ('0] z~ (x~, "0 d'r. 
i=2 0 

(17) 

For functional (9) to take extreme values, we need to equate to zero the first variation of 
the expanded functional, constructed similar to [8] and including the linear part of its 
increment, the initial and boundary conditions, and Eqs. (i0) and (ii). 

Omitting the intermediate calculations and varying the independent variables (the 
condition of stationariness will be satisfied in the case of triviality of each group of 
terms with the corresponding variations [9]), we can write the conditions of the problem 
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conjugate to problem (10)-(16): 

-- 9C~g 
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(19 )  

,~ (x, ~ )  = qo (x, ~m) = O, 

,~ (o, ~) = ~ (o, ~) - o, 
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) = 2 iT= (xi+> ~) -- f~+~ (~)], 

Ox Ox / 

(2O) 

(21) 

(22) 

(23) 

(24 )  

Considering Eqs. (24), (15), (13), and (14), for the linear part of the increment of 
the functional we have 

~ ,  Tm 
A J =  " ,f 2[Ts(xl ,  x ) - - f~ (1 : ) l z i (&,  z) d'c 

~=2 O i - -2 0 

-- z~ (xi, r) O~i (xi, "0 ] '  
Ox J 

d T  

= ~ k= ~ z~ k= 
i = l  o =~ Ox ix -~x Ox ] 

dxd'L ( 2 5 ) 

Using the conditions of the problem for the increments (10)-(16) and the problem con- 
jugate to it (18)-(24) and integrating by parts, after transformations we obtain: 

Ix IT  = - -  k= -- -- dxd~ -i- 
Z* ox Ox ) Ox Ox 

i = l  0 x i i = l  0 x i 

+ r u~=(av-- OT----~ (T=i -- Tg) -- AO~ v t~i (T== -- Tg) + *= , AX= ~ } - :  ~v 
i=I  0 x i k 

z ~ )  dxdw, 

Thus 

im {~+I , &z v 
-- - -  (T=~ -- Tg)) -- Aa v ~i (T~ i -- Ox ] -- ~v zi~} dxd'~. 

(26) 

Considering (20) and integrating by parts with allowance for conditions (12)-(16), we 
finally obtain 

~i -~- Ak= dxdT j" Aa v (T~ i - -  T~) ( ~  - -  ~) dxdx. 
i=] 0 x i ~:1 O x i 

(27) 

We obtain the following for the gradient of the functional directly from Eq. (27) 

oJ (28) 
0% - (T~-- Tg) (~i--m). 

The expression for the gradient of the functional 3J/3% s depends on the type of approxi- 
mation of the relation %s = Is(Ts ). With the use of B-splines for this [i0]: 
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m+ 1, 

g. (T~) = ~ ~.~Bh (Ts) 
/r 

the problem is reduced to finding the parameters Xk, the gradient of the functional of which 

is determined by the expressions 

o,  i i '+' "" rr~ ' +B,<,.,> ] 

To construct a stable algorithm based on the principle of variational regularization, 
we can choose the method of conjugate gradients. This is one of the most effective methods 
available from the point of view of the accuracy of the results, machine time, and amount 
of internal storage required. 

The above algorithm was realized in a program written in FORTRAN and checked on a model 
sample involving establishment of the internal heat-transfer coefficient. 

As the porous body we took a specimen of sintered copper powder with a porosity of 40% 

and of thickness b = 5 mm. It had the characteristics %s=0.1638--0,256.10-~Ts, k__~W, Cs= 
m-K 

kJ 
1.2155-- 0.984 (Ts-- 273) ~- 0.00234 (Ts-- 273) 2, m3 .}( �9 The chosen viscosity and inertial coefficients 

of resistance were as follows: a=3.18.10 II, Um2; 6=8, 5 • I/m ~. The injected gas was air 

with a constant temperature at the inlet T (0, T) = 3000K and injected at the rate pv = 0.05 
g 

kg/m 2" se c. 

As the other boundary conditions, we took values obtained from solving the direct heat- 
transfer problem with the conditions 

pV~g ( _ _ )  , kW/mg- 6% = O. 1 [~g-d-vv ' kW/nf" K; % = 750 ~/I:~ + sin ~ 
Tm 

The internal heat-transfer coefficient is established from these boundary conditions. 

The results obtained in solving the inverse problem after the fifth iteration were 
generalized by the formula (we used dimensional theory) 

t~v=O.083 (P~) ~ ~'~ AI.06 ' 

which  shows the  good a c c u r a c y  o f  t he  d e t e r m i n a t i o n  o f  the  i n t e r n a l  h e a t - t r a n s f e r  c o e f f i c i e n t  
by t h e  above a p p r o a c h .  

NOTATION 

x, coordinate; b, thickness of the porous body; n, number of measurements of the 
temperature of the body; Cs, Xs, volumetric specific heat and thermal conductivity of the 

body; 0, Cpg, %g, density, specific heat, and thermal conductivity of the injected gas; Ts, 

Tg, temperature of the wall and gas; aV, internal heat-transfer coefficient; pv, blowing 

rate; T, time; Tm, duration of experiment; p, pressure; Mg, molecular weight of gas; ~, B, 

coefficients of hydraulic resistance; ~, ~ , conjugate variables; qw' heat flow to the wall 
at the boundary. 
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FUZZY IDENTIFICATION OF ENERGY-EXCHANGE MODELS 

FROM TECHNOLOGICAL PROCESSES 

N. V. Diligenskii, P. V. Sevast'yanov, 
and N. V. Tumanov UDC 536.24 

An identification method is proposed that enables one to estimate the parameters and 
also to evaluate the model performance. The method is based on fuzzy-set theory. 

Very often, there are several competing models available to simulate a complex pheno- 
menon or process, and these contain adapted parameters that require experimental identifica- 
tion. 

Leaving aside aspects such as the computer run time and the algorithms involved, we can 
say that the best model is selected on criteria for accuracy and physical acceptability in 
the values obtained for the adapted parameters. The estimates of accuracy and physical accept- 
ability are dependent on fuzzy factors involved in the subjective preferences of those develop- 
ing and using the model, so it is desirable to use the theory of fuzzy sets to formalize the 
choice of the optimum model [I]. 

This analysis is made with reference to simulating the thermal and energy processes in 
the hot rolling of aluminum alloys. The following form can be given for the basic model for 
the processes in the rolling cage, which is represented by a system of nonlinear algebraic 
equations [2]: 

Ti-= [(cr, (z, P, To, Ho, Hi, v), (i) 
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